Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.

Identifieur interne : 000413 ( Main/Exploration ); précédent : 000412; suivant : 000414

Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.

Auteurs : Huiying Shang [Autriche] ; Jaqueline Hess [Autriche, Allemagne] ; Melinda Pickup [Autriche] ; David L. Field [Autriche, Australie] ; P R K. Ingvarsson [Suède] ; Jianquan Liu [République populaire de Chine] ; Christian Lexer [Autriche]

Source :

RBID : pubmed:32654641

Abstract

Many recent studies have addressed the mechanisms operating during the early stages of speciation, but surprisingly few studies have tested theoretical predictions on the evolution of strong reproductive isolation (RI). To help address this gap, we first undertook a quantitative review of the hybrid zone literature for flowering plants in relation to reproductive barriers. Then, using Populus as an exemplary model group, we analysed genome-wide variation for phylogenetic tree topologies in both early- and late-stage speciation taxa to determine how these patterns may be related to the genomic architecture of RI. Our plant literature survey revealed variation in barrier complexity and an association between barrier number and introgressive gene flow. Focusing on Populus, our genome-wide analysis of tree topologies in speciating poplar taxa points to unusually complex genomic architectures of RI, consistent with earlier genome-wide association studies. These architectures appear to facilitate the 'escape' of introgressed genome segments from polygenic barriers even with strong RI, thus affecting their relationships with recombination rates. Placed within the context of the broader literature, our data illustrate how phylogenomic approaches hold great promise for addressing the evolution and temporary breakdown of RI during late stages of speciation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.

DOI: 10.1098/rstb.2019.0544
PubMed: 32654641
PubMed Central: PMC7423283


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.</title>
<author>
<name sortKey="Shang, Huiying" sort="Shang, Huiying" uniqKey="Shang H" first="Huiying" last="Shang">Huiying Shang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Vienna Graduate School of Population Genetics, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Vienna Graduate School of Population Genetics, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Helmholtz Centre for Environmental Research, Halle (Saale), Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Helmholtz Centre for Environmental Research, Halle (Saale)</wicri:regionArea>
<wicri:noRegion>Halle (Saale)</wicri:noRegion>
<wicri:noRegion>Halle (Saale)</wicri:noRegion>
<wicri:noRegion>Halle (Saale)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pickup, Melinda" sort="Pickup, Melinda" uniqKey="Pickup M" first="Melinda" last="Pickup">Melinda Pickup</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Science and Technology (IST), Klosterneuburg, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Science and Technology (IST), Klosterneuburg</wicri:regionArea>
<wicri:noRegion>Klosterneuburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Field, David L" sort="Field, David L" uniqKey="Field D" first="David L" last="Field">David L. Field</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Edith Cowan University, Perth, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Edith Cowan University, Perth</wicri:regionArea>
<wicri:noRegion>Perth</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Swedish University of Agricultural Sciences (SLU), Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32654641</idno>
<idno type="pmid">32654641</idno>
<idno type="doi">10.1098/rstb.2019.0544</idno>
<idno type="pmc">PMC7423283</idno>
<idno type="wicri:Area/Main/Corpus">000197</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000197</idno>
<idno type="wicri:Area/Main/Curation">000197</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000197</idno>
<idno type="wicri:Area/Main/Exploration">000197</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.</title>
<author>
<name sortKey="Shang, Huiying" sort="Shang, Huiying" uniqKey="Shang H" first="Huiying" last="Shang">Huiying Shang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Vienna Graduate School of Population Genetics, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Vienna Graduate School of Population Genetics, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Helmholtz Centre for Environmental Research, Halle (Saale), Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Helmholtz Centre for Environmental Research, Halle (Saale)</wicri:regionArea>
<wicri:noRegion>Halle (Saale)</wicri:noRegion>
<wicri:noRegion>Halle (Saale)</wicri:noRegion>
<wicri:noRegion>Halle (Saale)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pickup, Melinda" sort="Pickup, Melinda" uniqKey="Pickup M" first="Melinda" last="Pickup">Melinda Pickup</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Science and Technology (IST), Klosterneuburg, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Institute of Science and Technology (IST), Klosterneuburg</wicri:regionArea>
<wicri:noRegion>Klosterneuburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Field, David L" sort="Field, David L" uniqKey="Field D" first="David L" last="Field">David L. Field</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Edith Cowan University, Perth, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Edith Cowan University, Perth</wicri:regionArea>
<wicri:noRegion>Perth</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Swedish University of Agricultural Sciences (SLU), Uppsala</wicri:regionArea>
<wicri:noRegion>Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Philosophical transactions of the Royal Society of London. Series B, Biological sciences</title>
<idno type="eISSN">1471-2970</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many recent studies have addressed the mechanisms operating during the early stages of speciation, but surprisingly few studies have tested theoretical predictions on the evolution of strong reproductive isolation (RI). To help address this gap, we first undertook a quantitative review of the hybrid zone literature for flowering plants in relation to reproductive barriers. Then, using
<i>Populus</i>
as an exemplary model group, we analysed genome-wide variation for phylogenetic tree topologies in both early- and late-stage speciation taxa to determine how these patterns may be related to the genomic architecture of RI. Our plant literature survey revealed variation in barrier complexity and an association between barrier number and introgressive gene flow. Focusing on
<i>Populus,</i>
our genome-wide analysis of tree topologies in speciating poplar taxa points to unusually complex genomic architectures of RI, consistent with earlier genome-wide association studies. These architectures appear to facilitate the 'escape' of introgressed genome segments from polygenic barriers even with strong RI, thus affecting their relationships with recombination rates. Placed within the context of the broader literature, our data illustrate how phylogenomic approaches hold great promise for addressing the evolution and temporary breakdown of RI during late stages of speciation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32654641</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2970</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>375</Volume>
<Issue>1806</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>Philosophical transactions of the Royal Society of London. Series B, Biological sciences</Title>
<ISOAbbreviation>Philos Trans R Soc Lond B Biol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.</ArticleTitle>
<Pagination>
<MedlinePgn>20190544</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rstb.2019.0544</ELocationID>
<Abstract>
<AbstractText>Many recent studies have addressed the mechanisms operating during the early stages of speciation, but surprisingly few studies have tested theoretical predictions on the evolution of strong reproductive isolation (RI). To help address this gap, we first undertook a quantitative review of the hybrid zone literature for flowering plants in relation to reproductive barriers. Then, using
<i>Populus</i>
as an exemplary model group, we analysed genome-wide variation for phylogenetic tree topologies in both early- and late-stage speciation taxa to determine how these patterns may be related to the genomic architecture of RI. Our plant literature survey revealed variation in barrier complexity and an association between barrier number and introgressive gene flow. Focusing on
<i>Populus,</i>
our genome-wide analysis of tree topologies in speciating poplar taxa points to unusually complex genomic architectures of RI, consistent with earlier genome-wide association studies. These architectures appear to facilitate the 'escape' of introgressed genome segments from polygenic barriers even with strong RI, thus affecting their relationships with recombination rates. Placed within the context of the broader literature, our data illustrate how phylogenomic approaches hold great promise for addressing the evolution and temporary breakdown of RI during late stages of speciation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Huiying</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Vienna Graduate School of Population Genetics, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hess</LastName>
<ForeName>Jaqueline</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Helmholtz Centre for Environmental Research, Halle (Saale), Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pickup</LastName>
<ForeName>Melinda</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Science and Technology (IST), Klosterneuburg, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Field</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Edith Cowan University, Perth, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
<AffiliationInfo>
<Affiliation>Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianquan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Bio-resources and Eco-environment, College of Life Science, Sichuan University, Chengdu, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lexer</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.h9w0vt4fw</AccessionNumber>
</AccessionNumberList>
</DataBank>
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.c.5018459</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Philos Trans R Soc Lond B Biol Sci</MedlineTA>
<NlmUniqueID>7503623</NlmUniqueID>
<ISSNLinking>0962-8436</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">gene flow</Keyword>
<Keyword MajorTopicYN="Y">hybridization</Keyword>
<Keyword MajorTopicYN="Y">recombination rate</Keyword>
<Keyword MajorTopicYN="Y">reproductive isolation</Keyword>
<Keyword MajorTopicYN="Y">speciation</Keyword>
<Keyword MajorTopicYN="Y">topology discordance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32654641</ArticleId>
<ArticleId IdType="doi">10.1098/rstb.2019.0544</ArticleId>
<ArticleId IdType="pmc">PMC7423283</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Heredity (Edinb). 1986 Dec;57 ( Pt 3):357-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3804765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Nov;81(5):1084-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2019 Feb 7;17(2):e2006288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30730876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 May 11;360(6389):656-660</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29674434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):3009-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E236-E243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29279400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Sep;223(4):2076-2089</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31104343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2003 Oct;57(10):2197-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14628909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2017 Dec;47:69-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2019 May;212(1):277-285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30872320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):11006-11011</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30297406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3133-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Oct;46(10):1089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25151358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2427-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26825293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Jan;190(1):5-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22219506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Dec;153(4):1959-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10581299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Mar;201(4):1263-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24491114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2016 Feb 12;14(2):e1002379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26871574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 May;20(10):2044-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21476991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Mar;15(3):176-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24535286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2012 Jul;28(7):342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22520730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2017;1(3):52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28523290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Nov;224(3):1035-1047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31505037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2016 Sep;48(9):1077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27428747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Oct 11;10:302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Feb;98(2):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Sep;23(17):4316-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2018 Feb;191(2):155-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29351021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1754-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26983554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2009 May;63(5):1171-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19154394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jul;55(7):1325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Nov;111(7):1440-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2482-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2017 Jan 24;1(2):1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28812620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Jun;27(6):1004-1015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1992 Jul;84(3-4):291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2015 Aug;69(8):1987-2004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26174368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Dec;23(12):686-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2542-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27206531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1981 Jan;35(1):124-138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28563447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2015 Jul;64(4):651-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2017 Feb;49(2):303-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28024154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Dec;23(23):5756-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25319559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 16;6:28043</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27306416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Dec;20(24):5123-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22066935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Jan;26(1):59-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27447453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 May;206(1):429-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28341652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Mar;202(3):1185-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Feb;225(3):1370-1382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31550399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2019 Jul 24;17(7):e3000391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31339877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2017 Aug;30(8):1450-1477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28786193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2018 Mar 14;121(4):665-679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29324975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2016 Dec 27;14(12):e2000234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28027292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 2015 Jun;70(7):1523-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24992884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2017 Jan;26(1):365-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27696571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Jun;194(2):459-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Apr;2(4):e64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16683038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jul 5;487(7405):94-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Nov;25(21):5330-5344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27661461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):756-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23103876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Mar 21;8:375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28377782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2013 Feb;26(2):229-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23323997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190544</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32654641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2017 Nov 15;284(1866):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29118129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Nov 1;366(6465):594-599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31672890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2016 Jun;25(11):2454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26857437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Mar;175(3):316-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20100106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Australie</li>
<li>Autriche</li>
<li>République populaire de Chine</li>
<li>Suède</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Shang, Huiying" sort="Shang, Huiying" uniqKey="Shang H" first="Huiying" last="Shang">Huiying Shang</name>
</region>
<name sortKey="Field, David L" sort="Field, David L" uniqKey="Field D" first="David L" last="Field">David L. Field</name>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
<name sortKey="Lexer, Christian" sort="Lexer, Christian" uniqKey="Lexer C" first="Christian" last="Lexer">Christian Lexer</name>
<name sortKey="Pickup, Melinda" sort="Pickup, Melinda" uniqKey="Pickup M" first="Melinda" last="Pickup">Melinda Pickup</name>
<name sortKey="Shang, Huiying" sort="Shang, Huiying" uniqKey="Shang H" first="Huiying" last="Shang">Huiying Shang</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Hess, Jaqueline" sort="Hess, Jaqueline" uniqKey="Hess J" first="Jaqueline" last="Hess">Jaqueline Hess</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Field, David L" sort="Field, David L" uniqKey="Field D" first="David L" last="Field">David L. Field</name>
</noRegion>
</country>
<country name="Suède">
<noRegion>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</noRegion>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000413 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000413 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32654641
   |texte=   Evolution of strong reproductive isolation in plants: broad-scale patterns and lessons from a perennial model group.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32654641" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020